Inert Solvent for Catalytic C-H Activation.

Achievement of High Conversion in Dehydrogenation of Alkane

Toshiyasu SAKAKURA, Katsuaki ISHIDA,[†] and Masato TANAKA*

National Chemical Laboratory for Industry, 1-1 Higashi, Tsukuba, Ibaraki 305

[†]Materials Development Research Laboratories, Nippon Mining Corporation,

3-17-35 Niizo-Minami, Toda, Saitama 335

High conversions are achieved in photo-assisted dehydrogenation of alkane catalyzed by RhCl(CO)(PMe₃)₂ using bulky hydrocarbons like 2,2,5,5-tetramethylhexane and 1,3,5-tri-t-butylbenzene as inert solvents. Main by-product in cyclooctane dehydrogenation at a high conversion is 1,3-cyclooctadiene.

Recently we have developed an effective dehydrogenation of alkane catalyzed by Vaska type rhodium complexes under irradiation (Eq. 1).¹⁾ One principal problem in these reactions is that a substrate itself must be used as a solvent, because usual solvents having C-H bonds are also reactive under the reaction conditions. This has strongly restricted the achievement of high conversions and application of the procedure to substrates which are expensive and/or of high melting points. Bergman has proposed the use of liquid xenon as an inert solvent for the stoichiometric C-H activation by Cp*Ir(PMe3).²⁾ However, liquid xenon is not practical to use for our catalytic system because of its very low boiling point. Hence, development of an inert solvent for the RhCl(CO)(PMe3)2-hv system is strongly desired.

$$R-CH2-CH2-R' \xrightarrow{h\nu, RhCI(CO)(PMe3)2} R-CH=CH-R' + H2 (1)$$

Since Graham reported the activation of methane C-H bond by Cp*Ir(CO)2 under irradiation in a perfluoroalkane as an inert solvent,³⁾ we first attempted to use some perfluoroalkanes as a solvent. However, most of them were completely immiscible with hydrocarbon substrates. Moreover, the Vaska type rhodium

586 Chemistry Letters, 1990

complex was not soluble in perfluoroalkanes, either. Although perfluorobenzene showed a good solubility for both hydrocarbons and the rhodium catalyst, it reacted with olefins formed under irradiation.⁴⁾ Next, we investigated the use of bulky hydrocarbons which were expected to remain intact during the dehydrogenation process because of steric bulkiness (Table 1). Thus, we have found that 2,2,5,5-tetramethylhexane (1) and 1,3,5-tri-t-butylbenzene (2) are inert solvents for the dehydrogenation catalyzed by the RhCl(CO)(PMe3)2-hv system. The former is easily prepared by the Wurtz coupling of neopentyl iodide synthesized from neopentyl alcohol.⁵⁾ The latter is commercially available.

When 1 was used as the solvent, more than 90% of cyclooctane (initial concentration 2 vol.%) was dehydrogenated to give mainly cyclooctene (COE) and 1,3-cyclooctadiene (1,3-COD) (Run 1). The amount of dimers (mainly cyclooctenylcyclooctene) 1a) was much less than that of COD. This means that β -hydride elimination from cyclooctyl (or cyclooctenyl) rhodium intermediates leading to dehydrogenation is much faster than C=C double bond insertion to these complexes. Worth noting here is that dilution of cyclooctane with 1 did not reduce the initial turnover rate so much as compared with the reaction of neat cyclooctane (Run 2). This strongly suggests that oxidative addition of a C-H bond to the rhodium complex is not the rate determining step in the present dehydrogenation. ^{1a)} COD and dimers seem to be secondary products formed from COE. In fact, the dehydrogenation of COE under similar conditions led to the formation of 1,3-COD and dimers (21 and 5% yields after 1 h, respectively). Regioselective formation of 1,3-COD is presumably ascribed to the preferential activation of an allylic C-H bond of COE. This is in good agreement with the fact that a C2-branched diene was formed in the dehydrogenative dimerization of 1-decene by the present catalytic system. 6) The possible dehydrogenation product of the solvent, 1,2-di-t -butylethylene was not detected at all. When the catalyst concentration was reduced from 2 mM to 0.5 mM, a higher turnover number was easily achieved (Run 3). A very bulky aromatic hydrocarbon 2 also allowed high conversions although the reaction in 2 was a little slower than in 1 (Run 4). Neohexane, when used as a solvent, was slightly dehydrogenated to give neohexene (0.4 turnover after 3 h) (Run 5). Another problem with neohexane lies in its low boiling point which limits the reaction temperature. Although n-alkane like decane is far less reactive than cyclooctane in a competitive dehydrogenation, ^{1a)} decane is too reactive as a solvent. Actually, decenes were formed in a larger amount than COE (Run 6). Other solvents like mesitylene, t-BuCO₂Me, and t-BuOMe hampered the reaction to result in low yields of COE (Runs 7-9). This is probably because the C-H bonds of these solvents oxidatively add to the rhodium center competitively with the substrate C-H bonds although resulting intermediates cannot undergo \(\beta \)-hydride elimination. Coordination of oxygen and scission of the carbon-oxygen bond in the ester or the ether may be other possible factors to reduce the catalytic

Table 1. Dehydrogenation of alkanes in solvents^{a)}

Run	Substrate	Solvent	Time / h	Conv. / %	Yield	r) %\ ^{(c}	'urnover)
					COE	1,3-COD	Dimers
1	cyclooctane	$(t - BuCH_2)_2$	1	60	52 (38) 7	1
			3	92	59 (44) 27	6
2	cyclooctane	cyclooctane	1	1.9	1.9 (72) 0	0
3	cyclooctane ^{c)}	$(t-BuCH_2)_2$	1	55	48 (12	6) 5	1
			3	90	60 (15	6) 21	9
4	cyclooctane	1,3,5-tri- <i>t</i> -	1	33	32	2	0
		butylbenzene	7	92	62	25	4
5	$\text{cyclooctane}^{d)}$	t-BuCH2CH3	1	14	14	0	0
			3	37	32	1	3
6	cyclooctane	decane ^{e)}	3	28	27 (20)) 1	0
7	cyclooctane	mesitylene	3	4	4	0	0
8	cyclooctane	t-BuCO ₂ Me ^{f)}	3	5	5	0	0
9	$\operatorname{cyclooctane}^{d)}$	t -BuOMe $^{f)}$	3	6	6	0	0
						decenes	<u>(</u>)
					t-2	c -2	others
10	decane ^{c)}	1,3,5-tri- <i>t</i> -	1	2	1	0.5	0
		butylbenzene	20	30	11	4	13
			48	42	16	5	19
					pentadecenolides ^{g)}		
11	penta-	$(t - BuCH_2)_2$	1	34	32 (54)		
	decanolide ^{c)}		3	53		50 (84	4)

a)Substrate 0.050 cm³, Solvent 2.5 cm³, RhCl(CO)(PMe₃)₂ 5.04 μmol, 100 °C, irradiated by a high pressure mercury lamp through a Pyrex filter. b)Based on substrates charged. c)Rh 1.26 μmol. d)Reaction at room temperature. e) Turnovers of 2-trans - and 2-cis - decenes were 25 and 11, respectively. f)Brown solid was deposited. g)Regioisomeric mixtures.

activity.⁷⁾ Substrates other than cyclooctane were also dehydrogenated in 1 or 2 to give olefinic compounds (Runs 10 and 11).

In summary, we have demonstrated the examples of inert solvents for the dehydrogenation of alkanes by the RhCl(CO)(PMe3)2-hv system. This is very important for practical applications of the catalytic C-H activation in a preparative manner.

References

- a) T. Sakakura, T. Sodeyama, and M. Tanaka, New J. Chem., 13, 737 (1989);
 b) T. Sakakura, T. Sodeyama, Y. Tokunaga, and M. Tanaka, Chem. Lett., 1988, 263;
 c) T. Sakakura, T. Sodeyama, and M. Tanaka, Chem. Ind. (London), 1988, 530.
- 2) M. B. Sponsler, B. H. Weiller, P. O. Stouland, and R. G. Bergman, J. Am. Chem. Soc., 111, 6841 (1989).
- 3) J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, J. Am. Chem. Soc., 105, 7190 (1983).
- 4) D. Bryce-Smith, A. Gilbert, B. H. Orger, and P. J. Twitchett, J. Chem. Soc., Perkin Trans. 1, 1978, 232.
- 5) J. F. Garst and P. W. Hart, J. Chem. Soc., Chem. Commun., 1975, 215.
- 6) T. Sakakura, Y. Tokunaga, T. Sodeyama, and M. Tanaka, Chem. Lett., 1988, 885.
- 7) In the dehydrogenation of neat ethyl acetate by the same catalytic system, a small amount of acetic acid was formed indicating a C-O oxidative addition (unpublished result).

(Received January 30, 1990)